

NAME

DATE

E-MAIL

Using NATS and Huma
to Enhance Open Source
Infrastructure
Empowering B2B and European Research
Communities with Self-Service Access

Jon Ander Novella de Miguel

jon.novella@safespring.com

2024-05-07

Agenda

1. Safespring’s mission

2. Goal of the self-service API

3. Huma framework

4. NATS microservices

5. Architecture

6. Messaging patterns

7. Challenges

Datacenter-security
Secure data center with

100% renewable energy

and focus on sustainability

Safespring

Scandinavian

Company offering

nordic IaaS and PaaS.

Compliance

Regulatory compliance

for GDPR. No data

transfer to 3:rd countries

Open Standard
flexibility, control over data,

interoperability, cost savings,

data portability

Stockhom

Oslo
Bergen

Kalix

Luleå

Safespring’s Vision

The platform of choice
for European Cloud

Computing

Safespring’s
mission

Through expertise, modern
infrastructure services, and flexibility,
Safespring is the foundation of digital
development. We enable rapid
innovation through reliable and
scalable services without lock-in effects.

● We strive for the position to be the leading provider of
innovative and secure cloud solutions.

● Our mission to deliver a robust and flexible public and
private cloud platform.

● We are committed to ensuring data sovereignty,
security, and privacy, whilst promoting cost-efficiency
and scalability through open standards and cutting-
edge technology.

Goals of the selfservice API

Controlled provisioning
of resources

• B2B and large customers
• Total quota and service specific

quotas
• Code driven customer resource

definitions
• Self-service users

Distributed management
of customers

• Easier on-boarding for customers
across multiple data centres

• Cut down support management
costs when existing customers
grow

Infrastructure
federation

• Federation across businesses and
research communities.

• The European Open Science
Cloud project (EOSC).

Huma
Back your HTTP API by OpenAPI 3
and JSON Schema

Huma
Back your HTTP API by
OpenAPI 3 and JSON Schema

● Generic HTTP handler signature
– Operations based on generic target

function signature

– Composable HTTP handlers

– Input and output must be structs

– Open API spec generation

● Annotated Go types for I/O models
– JSON schema generation from Go types

– Static typing for parameters, bodies,
headers, etc.

– Documentation generation using Stoplight
Elements

● Compatibility
– Huma implements the http.Handler

interface

– Uses standard context.Context

– Standard streaming support via io.Reader
and io.Writer interfaces

– Compatible with most popular routers

Huma: input/output models and operations

type ProjectInput struct {
Body Project ̀ json:"body"`

RawBody []byte `json:"-"`

}
type ProjectDetInput struct {

Name string `path:"name" json:"name,omitempty"`

Services []string ̀ query:"services" json:"services"`
}

type ProjectOutput struct {

Body Project ̀ json:"project"`
}

type User struct {

Username string ̀ json:"username" minLength:"1"`
Email string ̀ json:"email" format:"email"`

}

Annotated models

func[I,O any](ctx.Context,*I)(*O, error))

Generic Operation handler signature

Huma: JSON schemas and API spec

user:
additionalProperties: false

additionalProperties: false
properties:

email:
description: Email address
format: email
minLength: 1
type: string

username:
description: Username
minLength: 1
type: string

required:
- username
- email

type: object

JSON schema

/users:
get:
operationId: listUsers
responses:

'200':
content:

application/json:
schema:

description: List of users
items:

$ref: '#/User'
type: array

(...)

OpenAPI specification

Huma
Back your HTTP API by
OpenAPI 3 and JSON Schema

We want something that
can discover multiple
services seamlessly and
scales to many data-
centers

Limitations of HTTP:

● DNS/hostnames/IP based discovery

● Use of pull based request/reply semantics

● HTTP calls generally act on location-
dependent backends

NATS
Connect Your Services
with High-speed Messaging

Core NATS

● Fire and forget fast message publishing

● Flexible subject based addressing using
wildcards

● Accepts any type of payload

● Patterns:
– Request and reply

– Publish and subscribe

– Fan in and fan out

– Scatter and gather

– Load balancing using queue groups

NATS micro

Why?

● Service = set of endpoints or groups

● Group = common subject prefix used by all
endpoints

● Endpoints = subject subscription + function
handler

● Messaging patterns based on endpoint or
service level queue groups

● Discoverable, observable and nomadic

● Dead simple load balancing

● Observe:
– Service instances
– Subject names per svc
– Total requests / errors per svc

Service definition

nats micro list / info svc
nats micro stats svc

type HandlerFunc func(Request)

Architecture

Orchestrating multiple
HTTP APIs with NATS
● Self-service HTTP rest API publishes or

makes requests to NATS subjects.

● NATS micro operators suscribe to subjects,
eg: selfservice.project.create

● Each operator has its own queue group,
meaning all operators will receive a copy of
the messages

● NATS does load balancing for operators
sharing the same queue group

Stockholm
OpenStack API

Oslo
OKD API

- Project A
- User test

- Project A
- User test

Operator
OKD-Oslo

Operator
OS-Stockholm

Self-
service

HTTP API

HTTP

Fan in and fan out pattern

Fan in and fan out pattern

Scatter and gather pattern

Scatter and gather pattern

Challenges

Single API for OKD
and Openstack

• Openstack projects and OKD
Namespaces

• Users and groups
• Kubernetes annotations
• Quota synchronisation

Integration
testing

• Recyclable Openstack and OKD
environments

• Microstack and crc projects
• Error propagation
• Timeouts

We are
hiring!
• We are building a platform team!

• Do you love open source network
automation, BGP, SONiC?

Come talk to us, we are remote / hybrid!

WEBSITE LINKEDIN CONTACT

www.safespring.com @Safespring contact@safespring.com

	Slide 1
	Slide 2: Using NATS and Huma to Enhance Open Source Infrastructure Empowering B2B and European Research Communities with Self-Service Access
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Safespring’s mission
	Slide 7: Goals of the selfservice API
	Slide 8: Huma
	Slide 9: Huma Back your HTTP API by OpenAPI 3 and JSON Schema
	Slide 10: Huma: input/output models and operations
	Slide 11: Huma: JSON schemas and API spec
	Slide 12: Huma Back your HTTP API by OpenAPI 3 and JSON Schema
	Slide 13: NATS
	Slide 14: Core NATS
	Slide 15: NATS micro
	Slide 16: Architecture
	Slide 17: Orchestrating multiple HTTP APIs with NATS
	Slide 18: Fan in and fan out pattern
	Slide 19: Fan in and fan out pattern
	Slide 20: Scatter and gather pattern
	Slide 21: Scatter and gather pattern
	Slide 22: Challenges
	Slide 24: We are hiring!
	Slide 25

